Intelligenza artificiale

Intelligenza artificiale

Opera Developer: il browser con l’ IA in locale

La nuova versione di Opera utilizza intelligenza artificiale operante in locale, eliminando la necessità di connessioni a internet per il suo funzionamento.

Nell’era digitale contemporanea, la questione della protezione della privacy e della sicurezza su Internet è diventata sempre più cruciale. In questo contesto, l’intelligenza artificiale si è dimostrata una delle tecnologie più potenti e promettenti, anche se ha suscitato preoccupazioni riguardo alla gestione dei dati personali e alla sicurezza delle informazioni sensibili. È in questo scenario che Opera ha presentato un nuovo e innovativo passo avanti nel settore della privacy online con il suo browser Opera One.

Le novità di Opera Developer

Molto tempo fa, Opera aveva introdotto il proprio assistente virtuale, Aria, simile a Copilot di Microsoft e ChatGPT di OpenAI. La nuova sperimentazione riguarda invece un’intelligenza artificiale che funziona localmente, eliminando la necessità di connettersi a Internet eccetto per il download iniziale del modello linguistico da utilizzare. Questa innovazione è stata presentata da Opera all’interno del programma Al Feature Drops ed è basata sul framework open source Ollama.

Questa nuova funzionalità non solo rappresenta un significativo passo avanti tecnologico, ma ha anche il potenziale per influenzare il panorama dei browser Web. Attualmente, Opera permette di scegliere tra vari modelli di grandi dimensioni (LLM, Large Language Model) da scaricare, che possono avere dimensioni comprese tra 2 e 10 GB, con alcuni modelli specifici che superano i 40 GB. Tra i modelli disponibili per il download ci sono anche Lama di Meta e Gemma di Google, oltre ad altri con specifiche caratteristiche riassunte.

Per utilizzare questa nuova funzionalità di Opera, è necessario eseguire l’aggiornamento alla versione più recente di Opera Developer e seguire le istruzioni fornite nelle relative guide.

La guida per integrare l’IA in Opera

Scarica Opera Developer

Opera IA
Collegati al sito ufficiale di Opera utilizzando il link fornito: Opera Developer.
Una volta sulla pagina, trova e clicca sul pulsante “Download Opera Developer” situato al centro della pagina. Questo ti porterà alla sezione di download del sito.
Dopo aver scaricato il file di installazione operasetup.exe, trovalo nella cartella di download del tuo computer.Fai doppio clic sul file operasetup.exe per avviare il processo di installazione di Opera Developer.
Opera IA
Clicca su Accetta e Installa. Per condividere i dati con Opera procedi nel seguente modo: verrà visualizzata una nuova finestra dalla quale potrai selezionare le impostazioni di configurazione, Nella finestra delle impostazioni, dovresti trovare un’opzione per selezionare quali dati desideri condividere con Opera (Configura nelle impostazioni). Puoi deselezionare quelle opzioni che ritieni non necessarie o che preferisci non condividere.
opera IA
Nella schermata iniziale del browser, cerca e clicca sul pulsante “INIZIA” per avviare il processo di configurazione.
Puoi scegliere il tema che preferisci per personalizzare l’aspetto del browser. Se desideri, puoi selezionare uno sfondo per la tua pagina iniziale, abilitare il blocco degli annunci pubblicitari, scegliere i social network preferiti.

Configuralo

intelligenza artificiale senza internet
Nella barra laterale sinistra, dovresti trovare un pulsante dedicato per avviare la chat con Aria. Clicca su questo pulsante per aprirlo.
Opera Ia
Dopo aver aperto la chat con Aria, potrebbe essere richiesto di accedere al tuo account Opera. Se hai già un account Opera, inserisci le tue credenziali (indirizzo email e password) e accedi altrimenti clicca su Continua.

Usalo

intelligenza artificiale senza internet
Una volta aperta la chat Aria, cerca un menu a discesa posizionato nella parte superiore della schermata. Questo menu è denominato “Scegli il modello di AI locale”. Nel menu a discesa “Scegli il modello di AI locale”, dovresti trovare un’opzione o un pulsante denominato “Vai alle impostazioni”. Clicca su questo pulsante per procedere.
intelligenza artificiale senza internet
In questa lista ne abbiamo più di 150 a disposizione, inoltre possiamo anche selezionarne uno digitando il suo nome sulla barra di ricerca. Una volta selezionato scarichiamolo cliccando accanto sulla freccetta. Una volta scaricato clicchiamo in alto su Nuova Chat e selezioniamo sempre in alto (Scegli il modello di IA locale) il modello appena scaricato. Ora siamo pronti per testare il nostro modello di intelligenza artificiale.

Tanti modelli per ogni esigenza

I modelli LLM si distinguono per le loro capacità specifiche in diversi ambiti rispetto ad altri modelli. Ecco alcuni modelli da considerare insieme alle loro caratteristiche distintive:

  • Phi-2: Rilasciato da Microsoft Research, è un modello linguistico con 2,78 miliardi di parametri. Si distingue per le sue grandi capacità di ragionamento e comprensione del linguaggio. Secondo i suoi creatori, è due volte più potente e capace rispetto a sistemi più grandi come Llama 2 di Meta.
  • Mixtral: Questo modello ha ottime capacità di riassunto, classificazione, traduzione e completamento di testi. Dimostra un’elevata capacità nel rispondere in modo coerente alle interrogazioni, con un punteggio di 8,3 su MTBench, comparabile a quello ottenuto da GPT-3.5.
  • Code Llama e WizardCoder: Questi modelli sono progettati per supportare la generazione di codice. Supportano numerosi linguaggi di programmazione ampiamente utilizzati come Python, C++, Java, PHP, Typescript (JavaScript), C#, Bash e altri. Possono essere utilizzati per completare porzioni di codice preesistenti e risolvere bug.
  • Wizard-Math: Questo modello ha grandi capacità di ragionamento matematico. Migliora le capacità di ragionamento matematico di Llama-2, come confermato da esperimenti su due benchmark di ragionamento matematico (GSM8k e MATH). Rivela straordinarie capacità matematiche, superando tutti gli altri LLM open source con un margine sostanziale.

    Contattaci subito

    LEGGI ANCHE:

    Intelligenza artificiale

    Google Cloud Next ’24: Scopri le Novità AI di Big G

    Ci sono molte novità in arrivo per l’intelligenza artificiale sviluppata da Google, ovvero Google Cloud Next. Esaminiamole insieme.

    Con l’avvento dell’intelligenza artificiale che sta ridefinendo le frontiere della tecnologia, il Google Cloud Next ’24 emerge come l’evento chiave dove BigG sceglie di presentare le nuove frontiere e innovazioni nel campo dell’AI, consolidando ulteriormente la sua posizione nel settore. Questo convegno di portata internazionale non solo segna un’importante pietra miliare negli annunci relativi a google cloud ai, ma sottolinea anche l’impegno continuo di Google nel promuovere un ecosistema cloud più intelligente, accessibile e sicuro per le imprese di tutto il mondo.

    Nel dettaglio, l’articolo si propone di esaminare le principali innovazioni IA annunciate durante il Google Cloud Next ’24, valutandone l’impatto sulle aziende e sul panorama del cloud computing in generale. Un’attenzione particolare sarà rivolta alle questioni di sicurezza e scalabilità nell’uso dell’IA, evidenziando come Google stia affrontando queste sfide. Sarà inoltre discusso il ruolo emergente dell’IA generativa integrata in Google Workspace, delineando come queste avanzate tecnologie siano destinate a trasformare il modo in cui lavoriamo. Concludendo, questo testo offrirà una panoramica completa delle rivelazioni fatte al Google Cloud Next ’24, fornendo al lettore una chiara comprensione delle future direzioni che il giant della tecnologia intende perseguire nell’ambito dell’intelligenza artificiale.

    Le innovazioni IA annunciate a Google Cloud Next ’24

    Importanza del Google Cloud Next per l’evoluzione dell’IA

    Google Cloud Next ’24 ha segnato un punto di svolta nell’evoluzione dell’intelligenza artificiale, con l’introduzione di Duet AI e altre tecnologie avanzate.

    Google Cloud Next

    Queste innovazioni promettono di rivoluzionare il modo in cui interagiamo con le macchine, migliorando la produttività e la sicurezza.

    Overview delle principali innovazioni IA presentate

    Durante l’evento, Google ha presentato notevoli avanzamenti in vari ambiti, tra cui la generazione di contenuti in Gmail e Google Documenti, e l’integrazione migliorata di AI in Google Meet e Google Chat. Duet AI, in particolare, si è distinto per la sua capacità di assistere in diverse operazioni, dalla codifica alla gestione dei dati, fino alla sicurezza, evidenziando l’impegno di Google nell’offrire soluzioni AI sempre più integrate e accessibili.

    Impatto sulle aziende e sul cloud computing

    L’intelligenza artificiale generativa sta rivoluzionando il modo in cui le aziende operano e innovano. L’hardware, essenziale per il tech stack e per la filiera che arriva sino alle imprese utilizzatrici dell’AI, ha visto impatti significativi sui ricavi e sugli utili netti, come evidenziato da Nvidia. Anche il cloud computing ha registrato un impatto crescente sui bilanci, con aziende come Microsoft e Google che mostrano entusiasmo per le evoluzioni nel loro cloud.

    Come l’IA generativa sta trasformando il business

    La proliferazione dell’IA generativa e delle sue capacità multimodali ha inaugurato una nuova era di innovazione. Questa tecnologia migliora la produttività, ottimizza i flussi di lavoro e consente ai dipendenti di concentrarsi su attività di alto valore, trasformando le operazioni aziendali e migliorando le interazioni con i clienti.

    Esempi di come le aziende stanno utilizzando le nuove tecnologie IA

    Aziende come Uber e Duolingo stanno impiegando l’IA per ottimizzare i percorsi del traffico e personalizzare le esperienze di apprendimento.

    Google Cloud Next '24

    Allo stesso modo, piattaforme come Microsoft Copilot assistono i software, facilitando la gestione dei dati e la sicurezza. Questo dimostra come l’IA sia fondamentale non solo nello sviluppo del software ma anche in numerosi altri settori.

    Focus su sicurezza e scalabilità nell’uso dell’IA

    L’intelligenza artificiale sta rivoluzionando la sicurezza informatica, migliorando la protezione dei dati e l’integrità dei carichi di lavoro attraverso algoritmi avanzati di Machine Learning. Questi sistemi non solo rilevano minacce in tempo reale, ma possono anche rispondere autonomamente isolando gli asset compromessi. Tuttavia, la gestione della privacy e la sicurezza dei dati rimangono critiche, con normative come GDPR e CCPA che sottolineano l’importanza della conformità.

    Miglioramenti nella protezione dei dati e nell’integrità dei carichi di lavoro

    L’IA generativa offre nuove possibilità per la descrizione e l’analisi delle minacce, migliorando la comprensione e la reattività. Nonostante ciò, l’accuratezza e la correttezza rimangono sfide significative che necessitano di continui miglioramenti tecnologici.

    Innovazioni nell’infrastruttura per supportare l’IA a larga scala

    L’adozione dell’IA nella sicurezza informatica richiede un’infrastruttura robusta che supporti la scalabilità e la gestione dei rischi. Investimenti in ricerca e sviluppo sono essenziali per sfruttare il potenziale dell’IA e migliorare le misure di cyber security, garantendo un ambiente digitale sicuro contro le minacce in evoluzione.

    L’integrazione dell’IA generativa in Google Workspace

    Novità per migliorare la produttività e la collaborazione

    Google Cloud ha introdotto significative innovazioni in Google Workspace, sfruttando l’intelligenza artificiale generativa per elevare la produttività e la collaborazione.

    Google Cloud Next '24

    Funzioni come Smart Composing e Risposte Rapide anticipano e suggeriscono frasi durante la composizione di email e documenti, ottimizzando i tempi e migliorando l’efficienza comunicativa. Inoltre, l’IA assiste nella creazione di presentazioni multimediali, facilitando l’integrazione di immagini, audio e video generati automaticamente.

    Esempi pratici di applicazione dell’IA in ambiente Workspace

    L’IA generativa in Workspace permette agli utenti di iniziare bozze di testo automaticamente, ad esempio per annunci di lavoro o inviti, personalizzando il tono in base al contesto. Gemini, un assistente virtuale, supporta la pianificazione e la gestione di riunioni, mentre strumenti di analisi predittiva trasformano dati grezzi in insight azionabili, accelerando la creazione di report e decisioni data-driven.

    Queste applicazioni dimostrano come l’IA generativa stia trasformando il modo in cui interagiamo e lavoriamo, rendendo le operazioni quotidiane più intuitive e meno onerose.

    Conclusioni

    Attraverso le innovazioni presentate al Google Cloud Next ’24, Google ha delineato un futuro del cloud computing fondamentalmente trasformato dall’intelligenza artificiale, ponendo le basi per avvolgere la produttività, la sicurezza e la collaborazione in un tessuto sempre più intelligente e intuitivo. Le implicazioni di queste innovazioni si estendono ben oltre l’efficienza operativa, incidendo profondamente sul modo in cui le aziende concepiscono e implementano soluzioni tecnologiche, enfatizzando la rapidità con cui l’IA generativa sta diventando centrale in una vasta gamma di applicazioni e servizi.

    Google Cloud Next '24

    Lo sguardo rivolto al futuro che Google ha condiviso con il mondo durante il Google Cloud Next ’24 suggerisce chiaramente che l’integrazione dell’IA nel cloud computing non è semplicemente una tendenza, ma una progressione inevitabile verso ambienti digitali più capaci e personalizzati. Man mano che ci avviciniamo a questa nuova era, la continua esplorazione e integrazione dell’IA nelle nostre infrastrutture digitali rimane cruciale, invitando sia i creatori che gli utilizzatori di tecnologia a rimanere al passo con l’evoluzione delle capacità dell’IA, garantisce un impatto significativo e positivo sul mondo aziendale e oltre.

      Contattaci subito

      LEGGI ANCHE:

      Intelligenza artificiale

      Deepfake e sei il protagonista!

      Con il deepfake puoi sostituire il tuo volto in un video qualsiasi usando solo il tuo pc. Vediamo come

      Se sei interessato a creare deepfake, allora sei nel posto giusto. Questa guida per principianti ti darà
      tutti i dettagli di cui hai bisogno per iniziare a crearli in modo semplice e divertente.

      Spiegheremo passopasso come funziona questa tecnologia, quali strumenti e risorse ti servono e come mettere insieme il tuo primo deepfake. Alla fine di questa guida sarai un esperto! Quindi rilassati e preparati a imparare tutti i segreti di questa tecnologia sorprendente.

      Cos’è il deepfake?

      Deepfake è una tecnica che utilizza l’intelligenza artificiale per manipolare o generare immagini false o video di persone reali che sembrano autentici.

      deepfake

      Può essere utilizzato per creare contenuti dannosi o illegali. Mentre questa tecnologia diventa più avanzata, diventa sempre più difficile distinguere tra immagini e video reali e falsi.

      Come funziona?

      Il Deepfake utilizza reti neurali, un tipo di apprendimento automatico che analizza grandi set di dati, per mappare le caratteristiche facciali di una persona su un’altra.

      Più dati di allenamento vengono forniti al sistema, migliore sarà il risultato. I video di alta qualità richiedono tipicamente migliaia di immagini per addestrare il modello.

      Cosè Facefusion?

      Facefusion è uno strumento gratuito per PC che consente agli utenti di creare deepfake. È progettato per essere facile da usare anche per i principianti. Consente di fondere due volti in un video o in immagini statiche sostituendo le caratteristiche facciali di una persona con quelle di un’altra.

      Puoi usarlo per creare contenuti divertenti da condividere con gli amici o per sperimentare con la tecnologia deepfake.

      Come creare deepfake con Facefusion

      Per creare un deepfake con Facefusion, devi prima raccogliere molte immagini delle due persone che desideri fondere. Più immagini fornirai, più accurato sarà il risultato.

      Quindi, carica le immagini nel software, allinea i volti e regola le impostazioni per ottenere il risultato desiderato. Infine, fai clic su “Genera deepfake” e il software fonderà automaticamente i due volti nelle immagini o nel video da te scelto. Con un po ‘di pratica, puoi ottenere risultati piuttosto convincenti!

      Come funziona questa tecnologia?

      La tecnologia deepfake utilizza l’intelligenza artificiale e il machine learning per manipolare o generare immagini e video falsi ultrarealistici.

      Come si creano?

      I deepfake vengono creati utilizzando reti neurali che analizzano enormi set di dati, come foto e video, per rilevare e imitare le caratteristiche facciali di una persona.

      La rete neurale può quindi applicare queste caratteristiche a un’altra persona, fondendo digitalmente i loro volti. Per creare un deepfake audio, vengono utilizzati set di dati di una persona che parla per generare una nuova registrazione vocale che imita la voce della persona.

      A cosa servono?

      I deepfake possono essere utilizzati sia per scopi positivi che negativi. Ad esempio, possono essere utilizzati per la post-produzione cinematografica, per migliorare gli effetti speciali o per dare vita a personaggi deceduti.

      Tuttavia, possono anche essere utilizzati per diffondere disinformazione, per impersonare qualcuno online o per manipolare le elezioni.

      Come si individua un deepfake?

      Ci sono alcuni segni rivelatori che indicano che un video o un’immagine potrebbe essere un deepfake:

      • Movimenti innaturali: I deepfake non sempre riescono a imitare perfettamente i movimenti umani naturali.
      • Guarda se ci sono movimenti rigidi o innaturali.
      • Occhi strani: Gli occhi sono difficili da replicare e spesso appaiono innaturali o fuori fuoco in un deepfake.
      • Bordi sfocati: I deepfake spesso hanno un aspetto leggermente sfocato, soprattutto lungo i bordi del viso.
      • Asincronia labiale: Controlla se le labbra si sincronizzano perfettamente con l’audio. Spesso nei deepfake l’asincronia labiale è evidente.
      • Glitch e artefatti: A volte i deepfake presentano piccoli difetti come glitch, scintillii o artefatti nel video che rivelano che non è autentico.

      Programmi e app per creare deepfake

      FaceApp

      FaceApp è un’applicazione gratuita disponibile per iOS e Android che permette di modificare le foto con filtri e effetti, tra cui l’invecchiamento del viso, il cambio di genere e l’aggiunta di sorrisi. Quest’app usa l’intelligenza artificiale per creare immagini realistiche.

      Anche se l’app è gratuita, alcune funzioni aggiuntive sono disponibili tramite acquisti in-app.

      DeepFaceLab

      DeepFaceLab è un software open source gratuito per Windows, Linux e Mac che utilizza reti neurali per generare deepfake. È piuttosto complesso da usare e richiede una scheda grafica dedicata per funzionare, ma produce risultati molto realistici.

      DeepFaceLab permette di combinare e sostituire i volti nelle foto e nei video, nonché di modificare l’espressione facciale e l’illuminazione.

      Zao

      Zao è un’app per la creazione di deepfake che sfrutta la tecnologia di riconoscimento facciale per sostituire i volti in brevi video selfie.

      L’app sovrappone il tuo volto a quello di personaggi di film, show televisivi o celebrità in brevi clip video, sincronizzando le labbra con l’audio. Zao è disponibile solo per iOS, anche se una versione Android potrebbe arrivare in futuro.

      DeepNude

      DeepNude è un software controversa di deep learning che è in grado di generare immagini nude di donne da normali foto che indossano abiti. Funziona “spogliando” le donne nelle foto e generando immagini nude artificiali che sembrano incredibilmente realistiche. DeepNude è stato chiuso dai creatori dopo le critiche sul potenziale uso improprio, ma il codice sorgente è trapelato online.

      Questi sono alcuni dei programmi e delle app più famosi per creare deepfake. Come sempre, fai attenzione a usare queste tecnologie in modo etico e responsabile. I deepfake possono essere utilizzati per scopi di intrattenimento innocuo, ma anche per la disinformazione e la manipolazione.

      Aspetti positivi e negativi

      I deepfake sono spesso associati a preoccupazioni legittime sulla disinformazione e sulla manipolazione dei media. Tuttavia, questa tecnologia ha anche degli usi positivi che vale la pena considerare.

      Utilizzo positivo

      I deepfake possono essere utilizzati per creare contenuti di intrattenimento convincenti, come film blockbuster con attori digitali o filmati musicali con cantanti del passato. Possono anche essere utilizzati per scopi educativi, ad esempio per ricreare figure storiche e farle parlare agli studenti.

      Alcune aziende stanno li sperimentando per creare assistenti virtuali digitali più realistici e coinvolgenti. I deepfake possono anche essere utilizzati per creare contenuti di realtà virtuale e realtà aumentata più immersivi.

      Utilizzo negativo

      Sfortunatamente, i deepfake vengono spesso utilizzati per diffondere disinformazione e manipolare l’opinione pubblica. Sono stati utilizzati, purtroppo, per creare video falsi di politici che dicono o fanno cose che non hanno mai detto o fatto nella vita reale. Questi video falsi possono essere diffusi sui social media, dove è difficile distinguere il vero dal falso.

      I deepfake porno, in cui il volto di una persona viene inserito sul corpo di un attore porno senza il loro consenso, sono un altro uso negativo preoccupante della tecnologia. Questi infatti possono essere utilizzati per molestare, ricattare e intimidire le vittime.

      In definitiva, la tecnologia deepfake può essere utilizzata sia per scopi positivi che negativi. È importante che i ricercatori e i politici riflettano attentamente su come regolamentare e controllare questa potente tecnologia in modo da massimizzarne i benefici e minimizzarne i danni. Una comprensione più profonda dei deepfake e delle loro implicazioni è fondamentale per creare contromisure efficaci contro i loro usi dannosi.

        Contattaci subito

        LEGGI ANCHE:

        Formazione, Intelligenza artificiale, Software

        PDF Gear, l’intelligenza artificiale che ti riassume il testo

        Abbiamo scoperto una funzione nascosta di ChatGPT all’interno del programma PDF Gear che consente di riassumere automaticamente libri, relazioni e tesine. Questa funzione può gestire anche documenti in formato PDF.

        Un editor di file PDF efficace non dovrebbe solo visualizzare i documenti o combinarne diversi, ma anche consentire modifiche al testo e l’aggiunta di immagini. Adobe Acrobat è considerato il miglior software per queste esigenze, poiché può convertire PDF in documenti Word ed Excel, permettendo così di modificarne il contenuto. Inoltre, consente modifiche direttamente sui PDF stessi. Tuttavia, il suo costo, con un abbonamento minimo di 15 euro al mese, può essere un ostacolo.

        Fortunatamente, esistono altri programmi gratuiti che offrono funzionalità simili senza necessitare di registrazione. Un esempio eccellente è PDF Gear (https://www.pdfgear.com/), disponibile su diverse piattaforme come Windows, macOS, iOS e presto anche Android.

        La suite completa

        PDF Gear offre la possibilità di gestire e convertire file PDF in Word, Excel e PowerPoint direttamente online. È sufficiente caricare il documento e, in pochi istanti, si ottiene la versione convertita senza pubblicità. Per chi preferisce non installare il software, questa funzionalità online è ideale.

        Tuttavia, avere PDF Gear installato sul proprio computer offre vantaggi significativi. Evita di caricare documenti riservati online e fornisce accesso a funzioni esclusive, tra cui l’integrazione dell’intelligenza artificiale di ChatGPT nei PDF. L’interfaccia utente è semplice e disponibile in italiano, e dopo l’installazione si apre con una schermata iniziale che elenca tutte le funzioni principali.

        pdf gear ia

        L’utente può scegliere di convertire un PDF in un file Word, Excel o PowerPoint, oppure di modificare direttamente il testo all’interno del PDF. La decisione su quale metodo utilizzare dipende dalle specifiche esigenze: per documenti con molte immagini, è spesso più pratico modificare il testo direttamente nel PDF. Tuttavia, per modifiche estensive al testo, la conversione in Word è generalmente la soluzione più efficiente. Il software permette inoltre di aggiungere firme, timbri, immagini e selezionare porzioni di testo.

        Chat GPT

        Una funzionalità unica della versione Windows di PDF Gear è denominata “Chatta con PDF”. Questa opzione integra ChatGPT, un avanzato modello di intelligenza artificiale, permettendo di sintetizzare il contenuto del documento in italiano o di eseguire operazioni come proteggere il file con una password o comprimerlo per risparmiare spazio.

        pdf gear ia chat gpt

        Per utilizzare questa funzione, basta inserire i comandi nella casella di testo, simile a quella usata per ChatGPT. Questa caratteristica è estremamente vantaggiosa, poiché consente una gestione interattiva e diretta dei file PDF.

        Guida

        PDF Gear
        L’interfaccia principale di PDF Gear offre un’ottima chiarezza, consentendo di selezionare immediatamente l’azione desiderata. Che si tratti di convertire un documento da un formato all’altro, ridurne le dimensioni o unire due documenti, l’utente ha la possibilità di agire senza difficoltà.
        PDF Gear
        Per apportare modifiche significative a un documento PDF, conviene convertirlo nel formato Word facendo clic sull’icona in alto. Tuttavia, è importante notare che questa trasformazione potrebbe non essere completa, specialmente se il PDF contiene molte immagini. In tal caso, sarebbe più conveniente apportare le modifiche direttamente al documento PDF.
        Dopo aver selezionato il menu Modifica, saremo pronti per iniziare a esaminare e correggere il testo di nostro interesse. È da tenere presente, però, che il software potrebbe non includere tutte le font disponibili: nel caso in cui la fonte desiderata non fosse presente, potremmo optare per una simile o considerare la possibilità di convertire il PDF in un documento Word.
        Nella sezione “Chatta con PDF” visualizzata nel riquadro destro, troviamo l’implementazione del modello di intelligenza artificiale ChatGPT applicato al nostro documento. Questo strumento ci consente di richiedere un riassunto del documento, anche se lungo 70 pagine, e ricevere una risposta in italiano di qualità soddisfacente. Inoltre, abbiamo la possibilità di fare richieste per diverse formattazioni.

          Contattaci subito

          LEGGI ANCHE:

          Hardware, Intelligenza artificiale, Smartphone, Tech, Technology

          Ai Pin: l’alternativa allo Smartphone

          Per mesi, una strana visione ha incuriosito un poliziotto di San Francisco, regolarmente schierato fuori dagli uffici nel centro della città della startup Humane. Da quella porta sono emersi dipendenti con un piccolo dispositivo quadrato fissato al petto, simile alla telecamera indossabile, più ingombrante, fornita dal dipartimento. “Mi chiedo cosa siano quei dispositivi”, ha detto l’ufficiale quando WIRED ha visitato l’azienda la scorsa settimana.

          La rivelazione del gadget di Humane

          Oggi, la curiosità sul gadget di Humane è finita. L’azienda sta parlando del suo dispositivo high-tech progettato per essere fissato a una camicia o a una blusa, una soluzione che Humane spera possa diventare accettata tra le persone che non sono agenti giurati, come indossare auricolari wireless o smartwatch.

          Le caratteristiche di Ai Pin

          Il dispositivo di Humane, chiamato Ai Pin, può scattare foto e inviare messaggi, utilizza un raggio laser per proiettare un’interfaccia visiva sulla mano di una persona e include un assistente virtuale che può essere altrettanto avanzato quanto ChatGPT. Essendo sempre pronto a cercare nel web e comunicare, si suppone che riduca la dipendenza dagli smartphone.

          Disponibilità sul mercato e prezzi

          Ai Pin sarà in vendita negli Stati Uniti a partire dal 16 novembre, con prezzi a partire da $699, più $24 al mese per chiamate, messaggi e dati illimitati tramite T-Mobile. Humane ha svelato l’aspetto del dispositivo e le sue funzioni di base, tra cui la ricerca web e l’identificazione degli oggetti, alla conferenza TED e in una sfilata di moda parigina all’inizio di quest’anno. Oltre a annunciare prezzi e disponibilità oggi, l’azienda ha rilasciato nuovi dettagli sul software del Pin e su come esattamente un laser all’interno del dispositivo trasforma la mano di una persona in uno schermo. Le spedizioni inizieranno all’inizio del 2024.

          Il contesto dei dispositivi indossabili

          Il Pin è uno dei primi di molti dispositivi indossabili previsti per essere lanciati nei prossimi mesi e anni, costruiti attorno a servizi di intelligenza artificiale simili a quelli utilizzati attualmente da oltre 100 milioni di persone ogni settimana. Il famoso designer di Apple, Jony Ive, sarebbe tra i concorrenti.

          Se uno di essi può diventare socialmente accettabile o resistere all’analisi della moda è una domanda cruciale. I membri di un gruppo Discord creato da Humane per i suoi fan non vedono l’ora di acquistare i loro Pin. Tuttavia, le persone consultate da WIRED che hanno lavorato su hardware indossabile di tendenza, compresi occhiali di realtà aumentata, considerano il Pin più un nuovo giocattolo per gli appassionati di gadget che un dispositivo destinato a stabilire una nuova norma per la tecnologia personale.

          La visione di Humane

          È ancora troppo presto per dire se la speranza di Humane che il Pin possa aiutare le persone a vivere più nel momento presente si avvererà, o se fornirà semplicemente un nuovo modo per essere ossessionati in modo non salutare dalla tecnologia.

          La CEO di Humane, Bethany Bongiorno, è fiduciosa nell’appeal di massa del Pin, definendolo il primo computer contestuale al mondo. “L’IA è diventata qualcosa di cui tutti sono curiosi e vogliono davvero sapere come cambierà la loro vita”, afferma. “Offriamo la prima opportunità di portarla con te ovunque. Sta davvero toccando persone di ogni background, ogni gruppo di età, globalmente, in base a quello che stiamo percependo e vedendo nei feedback.”

          Quando Bongiorno e suo marito, Imran Chaudhri, hanno fondato Humane nel 2018 dopo lunghi periodi di lavoro nella progettazione hardware e nell’ingegneria del software presso Apple, hanno imposto rigorosi parametri per il loro prodotto. Doveva essere un dispositivo autonomo collegato direttamente alla rete cellulare, trasparente quando stava registrando e non sempre in ascolto di parole come “Hey Siri” o “OK Google”, come fanno gli smart speaker e alcuni telefoni. E l’intero pacchetto doveva essere conveniente. “Questo ha davvero impostato il tono per dove siamo oggi”, dice Bongiorno.

          La visione di Humane sui dispositivi indossabili

          I fondatori di Humane vedono i dispositivi indossabili precedenti, come gli occhiali intelligenti e gli headset AR, come ostacoli alla connessione umana. Il Pin è pensato per essere meno invasivo, sebbene altrettanto capace, e qualcosa che le persone possono indossare comodamente tutto il giorno senza rovinare la pettinatura. “Cerchiamo di avere una potente elaborazione con noi in ogni momento, ed è davvero di questo che si tratta”, dice Chaudhri, presidente e presidente della società. “Vogliamo avere accesso a più conoscenza, più informazioni. Vogliamo solo che sia in un modo che ci permetta di rimanere presenti.”

          Successo finanziario e investitori di Humane

          La startup ha raccolto $230 milioni di finanziamenti, inclusi $100 milioni annunciati a marzo, che la valuterebbero a $850 milioni circa. Gli investitori di Humane includono il CEO di OpenAI Sam Altman, che detiene la più grande quota esterna, circa il 15%; il CEO di Salesforce Marc Benioff; Microsoft; e i bracci di venture di LG, Volvo e Qualcomm.

          Dopo aver ordinato un Pin, gli acquirenti accedono a un sito web, Humane.center, per sincronizzare i loro contatti e iscriversi a servizi extra come la musica. Utilizzano la fotocamera del Pin per scannerizzare un codice fornito con il dispositivo per associarlo a quell’account online, dove registrazioni, foto e cronologie di chiamate e messaggi sono accessibili. I dati degli utenti non verranno utilizzati per addestrare sistemi di intelligenza artificiale, assicura Humane.

          Mark Lucovsky, ex dirigente software responsabile dei progetti di realtà aumentata presso Google e Meta, dà merito a Humane per non aver creato un altro paio di occhiali intelligenti. Tuttavia, si preoccupa che trovare un design per il Pin che un vasto pubblico trovi indossabile o alla moda richiederà molto tempo.

          Considerazioni etiche e futura evoluzione del Pin

          L’enfasi di Humane sulla privacy potrebbe anche attenuare l’interesse per il Pin, spegnendo funzionalità potenzialmente rivoluzionarie, sostiene Lucovsky. Se la fotocamera del dispositivo analizzasse sempre attivamente l’ambiente di una persona, potrebbe aiutare le persone a trovare le chiavi smarrite o ricordare loro, mentre sono al negozio, se ci sono ancora uova nel frigorifero a casa. “Abbiamo già a disposizione i chatbot tramite i telefoni”, dice. “Qual è il valore convincente e inaspettato che ottieni dal tuo Pin? Non credo di averlo ancora visto. Ma sono entusiasta di vedere come si evolverà.”

          Bongiorno e Chaudhri affermano di essere tanto tecnorealisti quanto tecnottimisti. Non si aspettano che il Pin sostituisca completamente gli smartphone e riconoscono che il Pin potrebbe sollevare nuove questioni etiche. “Parliamo non solo dei potenziali vantaggi incredibili, ma anche di cosa può andare storto”, dice Chaudhri, rifiutandosi di fornire una suddivisione del tempo trascorso usando il suo telefono rispetto al Pin.

          I fondatori di Humane dicono di non aver provato altri dispositivi basati sull’IA, ma ritengono che sia un segno positivo che non sono soli in questa nuova frontiera. Hanno parlato di sviluppare integrazioni per il Pin per le case con LG e per le auto con Volvo. Per ora, chiunque voglia provare la visione del futuro di Humane dovrà accontentarsi di assomigliare un po’ di più a un poliziotto da film americano.

            Contattaci subito

            LEGGI ANCHE:

            Intelligenza artificiale

            AI che ti cerca lavoro mentre dormi

            Ti sei mai chiesto come l’Intelligenza Artificiale possa influire sul mondo della ricerca del lavoro?

            Già in passato abbiamo parlato di ChatGPT e Intelligenza Artificiale, se vuoi saperne di più clicca qui

            Tornando alla nostra storia: Julian Joseph, un ingegnere software colpito dai grossi tagli nel settore tecnologico, ha sfruttato un servizio per automatizzare la sua ricerca di lavoro.
            Andiamo ad esplorare insieme questo articolo steso originariamente da Wired da noi tradotto.

            LazyApply: Automatizzare le Candidature

            A luglio, Julian Joseph è stato licenziato per la seconda volta in due anni a causa dei tagli nell’industria tecnologica. Temendo un lungo periodo di ricerca del lavoro, ha scoperto LazyApply, un servizio AI chiamato Job GPT che promette di candidarsi automaticamente a migliaia di lavori con un clic.

            Reazioni Divergenti: Cercatori di Lavoro e Recruiter

            L’automatizzazione delle candidature tramite AI è attraente per molti cercatori di lavoro, stanchi di reinserire le stesse informazioni nei sistemi di tracciamento dei candidati. Tuttavia, i reclutatori sono divisi sull’uso di bot. Alcuni ritengono che dimostri mancanza di serietà, mentre altri sono più aperti, purché il candidato sia valido. LazyApply ha concorrenza, con servizi come Sonara e Massive che offrono opzioni simili. Alcune aziende, come NeedleFinder Recruiting, non sono preoccupate dal modo in cui ricevono i curriculum, a patto che siano validi.

            Mentre alcuni sostengono che la quantità di candidature è cruciale, altri, come Dawson di NeedleFinder Recruiting, ritengono che la qualità sia più importante, specialmente per i professionisti affermati. Molti di questi servizi offrono anche lettere di presentazione generate dall’IA e assistenza nelle dimissioni. Tuttavia, alcuni sostengono che le referenze rimangono il modo più efficace per trovare lavoro, nonostante l’automatizzazione crescente nel settore della ricerca del lavoro.

            Competizione tra Servizi e Prospettive dei Cercatori di Lavoro

            LazyApply ha concorrenza, con servizi come Sonara e Massive che offrono opzioni simili.

            Il fondatore di Sonara, Victor Schwartz, ha sviluppato il suo servizio dopo aver trovato difficoltà nella ricerca di lavoro durante l’ultimo anno di studi. Schwartz ritiene che, sebbene il networking sia efficace, molti evitano questa pratica “spaventosa”. Sonara, attualmente con 5.000 utenti, offre un servizio AI che adatta automaticamente i curriculum alle descrizioni dei lavori.

            Sfide e Segreti della Tecnologia nelle Candidature

            I servizi di auto-candidatura solitamente non rivelano l’uso di bot o AI, ma alcuni segnali, come candidature istantanee o candidati non consapevoli delle posizioni applicate, possono far sospettare i reclutatori. Tuttavia, l’invio massiccio di candidature potrebbe portare a essere identificati come spam, creando problemi per i cercatori di lavoro. Alcuni ritengono che l’IA potrebbe essere più efficace se focalizzata su ruoli specifici, mentre altri, come Massive, cercano di migliorare la corrispondenza tra candidati e aziende aggregando informazioni sulla cultura aziendale da varie fonti.

            Consigli Esperti e Bilanciamento nell’Uso delle Tecnologie

            Sebbene l’IA possa semplificare il processo di candidatura, esperti come Gabrielle Judge consigliano di utilizzarla come parte di una strategia più ampia, che includa il networking e la ricerca manuale. Mentre LazyApply ha portato a successo per Julian Joseph, è importante bilanciare l’uso di strumenti automatizzati con approcci più tradizionali per massimizzare le opportunità di lavoro.

            Julian Joseph apprezza l’utilità di LazyApply nel gestire le noiose procedure di candidatura, consentendogli di concentrarsi sul networking e altre strategie senza preoccuparsi di perdere opportunità di lavoro. Tuttavia, non tutte le interviste ottenute tramite lo strumento erano perfette corrispondenze per i ruoli “DevOps” che cercava su Salesforce Cloud. A volte, LazyApply si candidava per ruoli di vendita non pertinenti. Nonostante ciò, Joseph ha rilevato che lo strumento gli ha permesso di scoprire lavori migliori di quanto pubblicizzato, come un’opportunità remota che ha appreso durante l’intervista.

            Joseph ritiene che, nonostante le non corrispondenze perfette, utilizzare lo strumento migliora le sue capacità di intervista e approfondisce la comprensione di ciò che desidera. Ha ricevuto un’offerta per un lavoro a contratto attraverso LazyApply e ha ottenuto colloqui con Apple e la Casa Bianca. Le ultime due opportunità sono emerse grazie alle sue connessioni personali, dimostrando che, nonostante l’automazione, il networking umano rimane un elemento cruciale nella ricerca di lavoro.

            E tu che ne pensi? Faccelo sapere nei commenti

              Contattaci subito

              LEGGI ANCHE:

              Intelligenza artificiale

              Photoshop fa miracoli con l’intelligenza artificiale

              Utilizzando Photoshop insieme alla potenza dell’Intelligenza Artificiale, è possibile apportare rapidamente modifiche a un’immagine, inclusa l’aggiunta non solo di elementi singoli, ma anche di intere regioni.

              L’Intelligenza Artificiale è diventata un campo di grande interesse attuale, attirando l’attenzione di aziende provenienti da settori diversi. Impiegata online per gestire automaticamente le richieste dei clienti, si sta persino discutendo il suo utilizzo per la guida dei futuri droni da combattimento.

              Tuttavia, utilizzare questa tecnologia per l’elaborazione grafica non è una sfida semplice. Non sorprende, quindi, che Adobe, un leader nell’ambito dell’elaborazione grafica, sia stata tra le prime, se non la prima, a presentare soluzioni basate sull’IA in grado di generare immagini di qualità professionale. Recentemente, la software house americana ha annunciato l’integrazione della funzione Riempimento Generativo, basata sull’IA, in una versione dedicata di Photoshop (al momento in fase beta).

              Cos’è

              Leggendo queste informazioni, è naturale chiedersi cosa sia possibile fare con questa nuova opzione. Anche se siamo ancora nelle fasi iniziali, il Riempimento Generativo offre diverse possibilità. Con questa funzionalità, è possibile espandere una fotografia, rimuovere oggetti o aggiungerne di nuovi.

              Per esempio, se desideri creare un ampio panorama marino, non è più necessario combinare diverse foto. Puoi semplicemente ingrandire la dimensione di un fotogramma utilizzando il comando “Dimensione quadro” e dire a Photoshop di riempire automaticamente le aree vuote.

              intelligenza artificiale immagine

              Un aspetto molto utile è la capacità di inserire oggetti che vengono creati in base al contesto, tenendo conto della dimensione, del colore e persino dell’ombreggiatura. Se desideri aggiungere una barca alla tua scena, ad esempio, puoi semplicemente digitare “boat” (nella versione Beta, le parole chiave devono essere in inglese, anche se in futuro sarà possibile utilizzare l’italiano) e vedrai apparire un’immagine realistica di una barca che galleggia tra le onde. È importante sottolineare che il risultato è estremamente realistico e non si basa su una porzione dell’immagine originale.

              Questa funzione può anche essere utilizzata per rimuovere rapidamente oggetti, anche di grandi dimensioni.

              Riempimento generativo

              La funzione di “Riempimento Generativo” di Photoshop si basa sull’Intelligenza Artificiale (IA) e in particolare su una tecnica chiamata “deep learning” o apprendimento profondo. In sostanza, utilizza una rete neurale artificiale, addestrata su un vasto dataset di immagini, per generare contenuti visivi che si integrano in modo coerente con l’immagine originale.

              Ecco come funziona in modo più dettagliato:

              1. Addestramento della rete neurale: Prima di essere utilizzata, la rete neurale viene addestrata su un ampio insieme di immagini che contengono oggetti, scenari e contesti diversi. Questo allenamento permette alla rete di imparare a riconoscere le caratteristiche visive e il contesto delle immagini.
              2. Generazione dell’immagine: Quando si utilizza la funzione di Riempimento Generativo in Photoshop, si seleziona un’area dell’immagine che si desidera modificare o espandere. La rete neurale utilizza quindi le informazioni apprese durante l’addestramento per generare nuovi contenuti visivi che si adattano in modo naturale al contesto dell’immagine originale.
              3. Coerenza visiva: L’IA si sforza di produrre risultati che siano coerenti con il resto dell’immagine in termini di stile, colore, ombreggiatura e altro ancora. Ciò contribuisce a rendere il risultato finale il più realistico possibile.
              4. Interazione dell’utente: L’utente può spesso fornire indicazioni alla rete neurale, ad esempio digitando parole chiave come “boat” per aggiungere un oggetto specifico. La rete cerca quindi di generare un oggetto che corrisponda alla descrizione fornita.

              In sintesi, il Riempimento Generativo di Photoshop sfrutta le capacità di un’IA addestrata per generare nuovi contenuti visivi che si integrano in modo coerente e realistico nelle immagini esistenti. Questa tecnologia può essere utilizzata per una varietà di scopi, come l’aggiunta di oggetti, la rimozione di elementi indesiderati o l’espansione di immagini esistenti.

              Firefly

              La funzione di Riempimento Generativo si basa su Firefly, la famiglia di modelli di Intelligenza Artificiale Generativa creati da Adobe, con una prima enfasi sulla creazione di immagini ed effetti di testo. È essenziale ricordare che Firefly è stata sviluppata utilizzando milioni di immagini non coperte da copyright, come quelle disponibili su Adobe Stock. Inoltre, abbiamo la possibilità di integrare il nostro materiale creativo per generare contenuti personalizzati.

              È importante notare che, al fine di preservare l’integrità dell’immagine originale, i nuovi contenuti vengono inseriti su livelli separati che possono essere rimossi con facilità. Prepariamoci a essere sorpresi dalle possibilità che questa funzione offre.

              photoshop
              Desideri rimuovere le due persone dalla foto? Non c’è bisogno di preoccuparsi della precisione; puoi farlo facilmente usando lo Strumento Rimuovi, che si basa anch’esso sull’IA. Basta evidenziare l’area contenente le due persone con il mouse, e vedrai che magicamente spariranno dalla foto.

                Contattaci subito

                Intelligenza artificiale

                Intelligenza Artificiale: nuove funzionalità di ChatGPT

                L’Intelligenza Artificiale è una potente risorsa, ma ottenere da essa i risultati desiderati richiede un approccio accurato nella formulazione delle istruzioni. Ecco dei trucchi per ottenere ciò che desideriamo

                Oggi, grazie all’Intelligenza Artificiale, è possibile svolgere una vasta gamma di attività. Poiché spesso interagiamo con questi strumenti attraverso chatbot, come l’ampiamente noto ChatGPT, possiamo ottenere risultati soddisfacenti anche utilizzando approcci spontanei e formulando il nostro primo messaggio senza alcuna preparazione.

                Questa espressione si riferisce alla dichiarazione, istruzione o domanda che usiamo per avviare una conversazione o per richiedere informazioni o risposte specifiche dal modello. Nel caso di un chatbot, questa può essere qualsiasi frase o interrogativo che inciti una discussione su un argomento particolare, come ad esempio “Puoi spiegarmi la storia del Colosseo?”, “Hai suggerimenti per avviare con successo un’attività?” oppure “Raccontami una battuta divertente.”

                Non solo chiacchiere

                Questi suggerimenti sono fondamentali per iniziare una conversazione con l’Intelligenza Artificiale e stabilire un punto di partenza utile. Tuttavia, se desideriamo ottenere risultati veramente significativi e sfruttare appieno il potenziale dell’IA per scopi professionali, educativi o personali, è essenziale apprendere come comunicare con essa nella sua lingua, ossia generare i prompt più efficaci e appropriati. Questo vale anche nel caso in cui vogliamo ottenere output diversi, come immagini generate da sistemi di generazione grafica.

                La capacità di scrivere il prompt perfetto è un’abilità che può essere quasi considerata un’arte. In effetti, esistono professionisti noti come “prompt engineer” o “ingegneri dei prompt” che hanno una profonda conoscenza dei diversi modelli di Intelligenza Artificiale e sono in grado di aiutare le aziende a risparmiare tempo e risorse creando richieste ottimali per scopi specifici.

                Questi esperti conoscono i dettagli tecnici dei modelli AI, comprendono come influenzare l’output e possono personalizzare le richieste per ottenere risultati desiderati. Questa capacità è particolarmente importante quando si cerca di ottenere risposte complesse o di elevata qualità. Imparare a formulare prompt efficaci è quindi cruciale per sfruttare al meglio le potenzialità dell’Intelligenza Artificiale in vari contesti professionali e creativi.

                Istruzione e contesto

                Assolutamente, per creare prompt efficaci, è fondamentale capire il loro potere nel modellare le risposte generate dall’Intelligenza Artificiale. Il prompt è il principale strumento che determina la qualità e la precisione delle risposte dell’IA. Attraverso il prompt, si condiziona il modello con informazioni o requisiti specifici, delineando il tipo di risposta che l’IA produrrà. Il modo in cui si effettua questo condizionamento può variare in base all’obiettivo.

                Ecco alcune strategie per creare prompt efficaci:

                1. Fornire contesto: Includere informazioni di base nel prompt è essenziale. Ad esempio, se si desidera che l’IA crei una poesia sulla natura, è utile fornire dettagli sulla stagione, sull’ambientazione o sulle emozioni che si vogliono evocare. Questo contesto aiuta l’IA a comprendere meglio il compito e a generare risposte pertinenti.
                2. Istruzioni specifiche: Definire chiaramente l’obiettivo e fornire istruzioni esplicite per il compito è cruciale. Ad esempio, se si vuole che l’IA scriva un articolo sulla sostenibilità, si dovrebbero specificare i punti chiave da trattare e il tono da utilizzare.
                3. Domande dirette: Nell’interrogare l’IA, fare domande dirette può essere efficace. Ad esempio, invece di chiedere “Parlami dell’inquinamento atmosferico”, è possibile scrivere “Fornisci una panoramica dettagliata sull’inquinamento atmosferico, includendo le sue cause principali e gli effetti sulla salute umana.”
                4. Sperimentare: Non esitare a sperimentare con diversi approcci di formulazione del prompt per vedere quale genera la risposta desiderata. Le piccole modifiche possono fare una grande differenza.
                5. Revisione continua: Dopo aver ottenuto una risposta dall’IA, esaminare attentamente se soddisfa le aspettative. Se necessario, è possibile apportare correzioni o riformulare il prompt per ottenere una risposta migliore.

                In generale, l’arte di creare prompt efficaci richiede pratica e comprensione del modello di Intelligenza Artificiale con cui si sta interagendo. Condizionare l’IA in modo adeguato attraverso i prompt è fondamentale per ottenere risultati utili e pertinenti nei vari contesti.

                Oltre a ciò, è necessario fornire istruzioni specifiche per il compito che intendiamo assegnare all’IA. Questo implica la chiara definizione del risultato finale desiderato e la comunicazione di istruzioni dettagliate e inequivocabili. Per esempio, se stiamo chiedendo all’IA di generare un’immagine che raffiguri un tramonto tranquillo sopra una catena montuosa, utilizzando colori vibranti e con un aspetto “da sogno”, è essenziale fornire dettagli così specifici in modo che il prompt sia in grado di guidare l’IA nella giusta direzione. Più le istruzioni sono chiare, specifiche e ricche di dettagli, tanto più elevata sarà la probabilità che l’IA produca il risultato esatto che stiamo cercando di ottenere.

                Porre delle limitazioni

                Un aspetto finale da considerare, di notevole importanza, riguarda l’impiego dei vincoli. In diverse circostanze, i vincoli possono effettivamente potenziare sia la creatività sia la precisione dei risultati generati dall’Intelligenza Artificiale. Per esempio, se desideriamo ottenere una composizione poetica, può rivelarsi vantaggioso specificare una particolare struttura poetica, come un sonetto o un haiku, al fine di ottenere una produzione più focalizzata. Allo stesso modo, se intendiamo richiedere una spiegazione di un teorema matematico, è opportuno indicare se desideriamo un’illustrazione semplificata o un’esplicazione adatta a un pubblico di studenti delle scuole medie.

                Inoltre, i vincoli possono anche abbracciare un aspetto creativo, come quando richiediamo all’IA di creare un’opera d’arte ispirata allo stile di un determinato artista. Capire come interagiscono il condizionamento, il contesto, le istruzioni specifiche per una data attività e i vincoli costituisce la chiave per la scrittura efficace dei prompt.

                Lasciamo che ci aiuti

                L’Intelligenza Artificiale offre non solo strumenti per ottimizzare i prompt esistenti, ma anche per crearli inizialmente in inglese a partire da istruzioni in italiano. Questo approccio permette di sfruttare una vasta base di dati in inglese, dato che i modelli AI sono solitamente più addestrati per questa lingua. Successivamente, sarà l’IA stessa a tradurre il testo in italiano.

                Inoltre, per la grafica, è possibile ricevere assistenza dall’Intelligenza Artificiale e persino creare prompt basati su immagini. L’IA è stata progettata per essere un supporto, quindi possiamo sfruttare questa caratteristica per generare prompt iniziali di alta qualità, che poi possiamo ulteriormente perfezionare per ottenere risultati eccellenti.

                In sintesi, l’IA offre una gamma di strumenti per semplificare il processo di creazione di prompt, consentendoci di accedere a una vasta base di dati, migliorando così la qualità delle interazioni e dei risultati ottenuti.

                Creiamo testi perfetti senza fatica

                intelligenza artificiale promptperfect
                Colleghiamoci al sito di PromptPerfect (https://promptperfect.jina.ai/home), registriamoci e, per iniziare, scegliamo il livello Principiante per l’ottimizzazione automatica dei prompt. Do­po esserci fatti la mano potremo sperimentare con gli altri livelli.
                intelligenza artificiale promptperfect 2
                Clicchiamo su Nuova ottimizzazione per creare il nostro prompt e selezioniamo il modello (ossia la piattaforma di Intelligenza Artificiale) da utilizzare. Tra i vari modelli di testo disponibili, selezioniamo ChatGPT.
                intelligenza artificiale promptperfect 3
                Inseriamo uno spunto originale per il nostro prompt, ossia in questo caso un tema su Dante. Clicchiamo sulla freccia per proseguire. Partiamo con 21 crediti nella versione gratuita ma aumenteranno più useremo PromptPerfect
                intelligenza artificiale promptperfect 4
                Dal nostro spunto di 5 parole PromptPerfect ha generato un prompt di 115 parole in inglese e molto più dettagliato. Possiamo anche visualizzarlo in italiano.
                Viene generato sia un testo dal nostro spunto originale sia uno dal prompt ottimizzato, in inglese. Cliccando sull’ico­na del foglio possiamo copiare ogni parte della pagina. Se­lezioniamo copia l’output dopo l’ottimizzazione
                Apriamo ChatGPT, scriviamo “Traduci in italiano que­ sto testo:” e incolliamo l’output. Avremo il nostro tema in italiano, basato sull’addestramento più completo di ChatGPT, e non ci è servito usare l’inglese.

                Generiamo un prompt da una foto

                Possiamo anche ottenere gratuitamente un prompt per creare un’immagine simile a una che abbiamo già,
                usandola come modello. Rechiamoci all’indirizzo https://replicate.com/collections/image-to-text e selezioniamo il modello da https://replicate.com/methexis-inc. Trasciniamo un’immagine su
                Drop a file or click to select o clicchiamo per caricarla dall’hard disk. Altrimenti clicchiamo su Take a photo with your webcam per scattare una foto. Clicchiamo su Submit per ricavare un prompt in inglese che la descriva. Copiamolo, andiamo all’indirizzo https://replicate.com/stabiIity-ai/stabIe-diffusion
                e incolliamolo nel campo Prompt. Eliminiamo degli elementi se ci sembrano superflui e clicchiamo su Submit per generare la nostra immagine.

                  Contattaci subito

                  LEGGI ANCHE:

                  Intelligenza artificiale

                  L’Intelligenza Artificiale

                  Quando ci si riferisce all’Intelligenza Artificiale, si evoca immediatamente l’immagine di tecnologie all’avanguardia, di robot in grado di comprendere e prendere decisioni autonome, e di un mondo futuristico in cui uomini e macchine coesistono. Tuttavia, l’Intelligenza Artificiale e il suo impiego sono molto più concreti di quanto si possa immaginare e trovano applicazione effettiva in diversi settori della vita quotidiana. È importante notare che tali applicazioni risultano meno invasive di quanto spesso si possa pensare o di quanto venga rappresentato nei film di fantascienza, i quali traggono ispirazione dall’Intelligenza Artificiale come tema centrale per numerose serie, alcune delle quali di successo.Ma cos’è realmente l’Intelligenza Artificiale e come si è sviluppata?

                  Dal punto di vista tecnico, l’Intelligenza Artificiale rappresenta un campo dell’informatica che si occupa della programmazione e del design di sistemi hardware e software, i quali conferiscono alle macchine determinate caratteristiche considerate tipicamente umane, come ad esempio la percezione visiva, spazio-temporale e decisionale. In altre parole, l’Intelligenza Artificiale non si limita solo all’aspetto dell’intelligenza intesa come capacità di calcolo o conoscenza di dati astratti, ma si estende anche a tutte quelle diverse forme di intelligenza riconosciute dalla teoria di Gardner. Queste forme comprendono l’intelligenza spaziale, sociale, cinestetica e introspettiva. L’obiettivo di un sistema intelligente è quindi quello di cercare di riprodurre una o più di queste diverse forme di intelligenza, che, sebbene comunemente associate all’essere umano, possono effettivamente essere replicabili da specifiche macchine.

                  Quando nasce l’Intelligenza Artificiale?

                  Secondo la definizione odierna, l’Intelligenza Artificiale ha avuto origine con l’avvento dei computer nel 1956. In quell’anno si tenne un convegno negli Stati Uniti, al quale parteciparono importanti esperti del campo che successivamente sarebbe stato denominato Intelligenza Artificiale, ma che allora era noto come Sistema Intelligente. Durante questo entusiasmante evento, furono presentati programmi in grado di eseguire ragionamenti logici, in particolare nell’ambito della matematica. Il programma Logic Theorist, sviluppato dai ricercatori informatici Allen Newell e Herbert Simon, dimostrò la capacità di dedurre teoremi matematici a partire da determinate informazioni.

                  Come si può immaginare, gli anni successivi alla nascita dell’Intelligenza Artificiale furono un periodo di fervore intellettuale ed esplorativo. Università e aziende informatiche, tra cui spicca IBM, si dedicarono alla ricerca e allo sviluppo di nuovi programmi e software capaci di pensare e agire come esseri umani, almeno in determinati campi e settori. Emergono programmi sempre più complessi nel dimostrare teoremi, e soprattutto, viene creato Lisp, il primo linguaggio di programmazione che ha fornito la base per i software di Intelligenza Artificiale per oltre trent’anni. Gli anni che seguirono sono stati un periodo di grande progresso e scoperte nel campo dell’Intelligenza Artificiale.

                  La nuova era dell’Intelligenza Artificiale si apre con l’utilizzo di un algoritmo innovativo, concepito già alla fine degli anni Sessanta, ma che non ha trovato piena applicazione a causa delle limitazioni dei primi programmi di Intelligenza Artificiale nel campo dell’apprendimento. Parliamo dell’algoritmo che consente l’apprendimento per reti neurali, il quale è stato sperimentato sia in ambito informatico che psicologico. Grazie a questa duplice applicazione, gli sviluppatori di Sistemi Intelligenti hanno scoperto un’ampia gamma di possibilità. In particolare, il primo vero successo dell’Intelligenza Artificiale è stato l’incontro tra Deep Blue, una macchina sviluppata da IBM, e il campione di scacchi in carica, Garry Kasparov. Sebbene i primi scontri siano stati vinti da Kasparov, i continui miglioramenti apportati al sistema di apprendimento di Deep Blue hanno permesso alla macchina di ottenere la vittoria nelle partite successive. Questa vittoria, come confermato dallo stesso campione di scacchi, è stata attribuita al fatto che la macchina aveva raggiunto un livello di creatività così elevato da superare le conoscenze stesse del giocatore.

                  Le basi dell’intelligenza artificiale

                  Alla base dei problemi con lo sviluppo di sistemi e programmi di Intelligenza Artificiale ci sono tre cose fondamentali che riguardano il modo in cui gli esseri umani si comportano. Prima di tutto, c’è bisogno di una conoscenza che non sia noiosa e sterile, ma che abbia un tocco di vita. Poi, c’è bisogno di avere una coscienza che permetta di prendere decisioni non solo basandosi sulla logica, ma anche sull’abilità di risolvere problemi in modo diverso a seconda del contesto in cui ci si trova.

                  Grazie all’uso delle reti neurali e di algoritmi che sanno ragionare come noi umani in diverse situazioni, i sistemi intelligenti stanno migliorando sempre di più le loro abilità comportamentali. Per farlo, la ricerca si è concentrata non solo nello sviluppo di nuovi algoritmi, ma soprattutto nell’aumentare il numero di algoritmi che possono imitare i comportamenti diversi in base agli stimoli ambientali. Questi algoritmi complessi, inseriti nei sistemi intelligenti, sono in grado di “prendere decisioni”, cioè fare scelte in base al contesto in cui si trovano. Ad esempio, quando gli algoritmi sono collegati ai veicoli autonomi, l’auto può decidere, in caso di pericolo, se sterzare o frenare a seconda della situazione. Dipende dalle informazioni che arrivano dai sensori e calcolano quale opzione garantisca una maggiore sicurezza per il conducente e i passeggeri.

                  Le decisioni prese dai veicoli autonomi e dagli altri sistemi di Intelligenza Artificiale si basano su algoritmi specifici che definiscono una conoscenza di base e una conoscenza più ampia che viene creata tramite l’esperienza. Per migliorare sempre di più gli algoritmi, è stato sviluppato un settore dedicato chiamato “rappresentazione della conoscenza”. Questo settore studia come ragioniamo come esseri umani e, soprattutto, come rendere questa conoscenza comprensibile alle macchine tramite un linguaggio e comandi sempre più precisi e dettagliati. Quando si parla di conoscenza umana e di trasferimento di questa conoscenza alle macchine, non si tratta solo di nozioni accademiche. Si tratta piuttosto di esperienza e della capacità di comprendere nuove informazioni attraverso quelle che abbiamo già nel nostro sistema. Queste informazioni vengono fornite alle macchine attraverso diverse modalità, le più importanti delle quali si basano sulla Teoria dei Linguaggi Formali e sulla Teoria delle Decisioni.

                  Nel caso della Teoria dei Linguaggi Formali, utilizziamo diversi approcci (i principali sono l’approccio generativo, riconoscitivo, denotazionale, algebrico e trasformazionale) che si basano sulle teorie delle Stringhe e sul loro utilizzo. Le Stringhe rappresentano veri e propri linguaggi formali, ma le loro proprietà variano a seconda dell’approccio che si utilizza.

                  L’apprendimento automatico

                  Un grande passo avanti nell’Intelligenza Artificiale è stato compiuto quando sono stati creati algoritmi specifici che permettono alle macchine di migliorare il loro comportamento (cioè la capacità di agire e prendere decisioni) attraverso l’esperienza, proprio come fanno gli esseri umani. È fondamentale sviluppare algoritmi che possano imparare dai propri errori per creare sistemi intelligenti che operino in contesti imprevedibili dai programmatori. Grazie all’apprendimento automatico (machine learning), una macchina può imparare a compiere azioni anche se non sono state programmate in anticipo.

                  Per i non esperti, l’apprendimento automatico è probabilmente la parte più “romantica” dell’Intelligenza Artificiale, che ha ispirato diversi registi per i loro film famosi che raccontano come le macchine e i robot migliorino nel tempo grazie all’esperienza. Oltre all’aspetto scenico e affascinante, l’apprendimento automatico è il frutto di una profonda ricerca teorica e pratica, basata sulla teoria computazionale dell’apprendimento e sul riconoscimento dei pattern. L’apprendimento automatico è complesso e può essere suddiviso in tre modalità a seconda delle richieste di apprendimento rivolte alla macchina: apprendimento supervisionato, apprendimento non supervisionato e apprendimento per rinforzo. Le differenze tra queste modalità risiedono principalmente nel contesto in cui la macchina deve imparare le regole generali e specifiche che portano alla conoscenza. Nell’apprendimento supervisionato, ad esempio, vengono forniti alla macchina esempi di obiettivi da raggiungere, mostrando le relazioni tra input, output e risultato. La macchina deve quindi estrarre una regola generale dai dati forniti, in modo che possa scegliere l’output corretto ogni volta che viene stimolata da un determinato input per raggiungere l’obiettivo.

                  Il futuro dell’Intelligenza Artificiale

                  Se fino a pochi anni fa il principale problema di tutti gli scienziati coinvolti nella ricerca relativa all’Intelligenza Artificiale era quello di poter dimostrare la realistica possibilità di utilizzare sistemi intelligenti per usi comuni, oggi che questo obiettivo è ampiamente raggiunto ci si chiede spesso quale possa essere il futuro dell’Intelligenza Artificiale. Sicuramente molta strada deve essere ancora fatta, sopratutto in determinati settori, ma la consapevolezza che l’Intelligenza Artificiale oggi rappresenta una realtà e non più un’ipotesi, i dubbi sono soprattutto relativi alle diverse possibilità di utilizzo dei sistemi intelligenti e al loro impatto sul tessuto sociale ed economico.

                  E se da un lato l’entusiasmo per l’evoluzione tecnologica è sicuramente molto evidente in diversi settori, dall’altro la paura che a breve le macchine potrebbero sostituire del tutto l’uomo in molti luoghi di lavoro si è insinuata in maniera sempre più insistente nelle menti di molti. L’evoluzione tecnologica già in passato ha portato a sostituire la mano d’opera umana con macchine e computer che, in maniera più rapida e soprattutto più economica, sono stati utilizzati in diversi settori. Con l’uso massivo dell’Intelligenza Artificiale sarà possibile perdere ulteriori posti di lavoro ma è anche vero che si apriranno sempre più strade per la realizzazione di nuove tipologie di figure professionali. Ma il contrasto tra uomo e macchina è un settore molto più ampio che non è solo relativo all’evoluzione dell’Intelligenza Artificiale e dei sistemi intelligenti, ma anche e soprattutto relativo alla morale e all’etica lavorativa e al corretto utilizzo delle macchine nel rispetto dell’uomo. Probabilmente la direzione che si prenderà non è ancora ben delineata, ma potrà portare a una nuova rivoluzione culturale e industriale

                    Contattaci subito

                    LEGGI ANCHE:

                    Intelligenza artificiale

                    DragGAN: con l’AI Google rivoluziona l’editing delle immagini

                    DragGAN, l’avanzato strumento di editing fotografico basato su IA. Trasforma immagini con precisione e velocità. Uscita prevista: Giugno 2023

                    I ricercatori di Google hanno recentemente rilasciato una nuova tecnica di intelligenza artificiale. Consente agli utenti di manipolare le immagini in pochi secondi con un semplice clic e trascinamento. 

                    Il nuovo DragGAN è uno strumento di editing AI che sfrutta un GAN (Generative Adversarial Network) pre-addestrato per sintetizzare idee che seguono con precisione l’input dell’utente pur rimanendo sulla molteplicità di immagini realistiche.

                    Il potere di DragGAN

                    DragGAN è una rivoluzionaria tecnologia di fotoritocco basata sull’intelligenza artificiale che promette di cambiare radicalmente il modo in cui modifichiamo le immagini. Questo nuovo strumento di editing offre un approccio completamente diverso rispetto ai tradizionali software di fotoritocco come Photoshop. DragGAN eliminerà la complessità e gli infiniti livelli di Photoshop, aprendo la strada a qualcosa di completamente nuovo e innovativo.

                    DragGAN si basa sull’intelligenza artificiale e utilizza algoritmi avanzati per trasformare le immagini in modo preciso e veloce. Grazie a questa tecnologia, sarà possibile apportare modifiche e miglioramenti alle immagini con estrema precisione, consentendo agli utenti di ottenere risultati sorprendenti con facilità, come nel video seguente:

                    Secondo quanto riportato, DragGAN sarà disponibile a partire dal mese di giugno 2023.

                    Nonostante non siano disponibili ulteriori dettagli specifici sull’uso e sulle funzionalità esatte di DragGAN, si prevede che questo strumento avrà un impatto significativo nel campo del fotoritocco, semplificando il processo di editing delle immagini.

                    In conclusione, DragGAN è un innovativo strumento di editing fotografico basato sull’intelligenza artificiale che sta per rivoluzionare il modo in cui modifichiamo le immagini. Con la promessa di semplificare il processo di fotoritocco e offrire risultati sorprendenti, DragGAN è sicuramente un’interessante tecnologia da tenere d’occhio

                      Contattaci subito

                      LEGGI ANCHE: